Home
Class 11
MATHS
If u = 3t^(4) - 5t^(3) + 2t^(2) - 18t+4...

If `u = 3t^(4) - 5t^(3) + 2t^(2) - 18t+4`, find `(du)/(dt)` at `t = 1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Given s=t^(2)+5t+3 , find (ds)/(dt)

Given s=t^(2)+5t+3 , find (ds)/(dt)

Given s=t^(2)+5t+3 , find (ds)/(dt)

Given s=t^(2)+5t+3 , find (ds)/(dt)

1.If x=5t-t^(3) ,y=t^(2)+4t find (dy)/(dx) at t=1 .

Given u= 7t^4-2t^(3)-8t-5 , find (du)/(dt) . Hence, find (du)/(dt) at t = 0, 1, 2.

Given u=7t^(4)-2t^(3)-8t-5, " find " (du)/(dt) . Hence, find (du)/(dt) at t = 0, 1, 2.

If u(x,y) =x^(2)y + 3xy^(4), x = e^(t) and y= sin t, find (du)/(dx) and evaluate it at t=0.

Given that s=t^(2)+2t+3 . Find (ds)/(dt) .

Let the function y = f(x) be given by x= t^(5) -5t^(3) -20t +7 and y= 4t^(3) -3t^(2) -18t + 3 where t in ( -2,2) then f'(x) at t = 1 is