Home
Class 10
MATHS
sin^2A.cot^2A - cos^2A.tan^2A =1...

`sin^2A.cot^2A - cos^2A.tan^2A =1 `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove :sin^(2)A cot^(2)A+cos^(2)A tan^(2)A=1

sin cot ^ (- 1) cos tan ^ (- 1) 2

sin cot ^ (- 1) cos tan ^ (- 1) 2 =

cos ec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cos ec^(2)A-1)

Prove that: sin^(2) A tan A + cos^(2) A cot A + 2 sin A cos A= tan A + cot A

If 3cot A=4 , check whether (1-tan^2A)/(1+tan^2A)=cos^2A-sin^2A or not.

If 3cot A=4 , check whether (1-tan^2A)/(1+tan^2A)=cos^2A-sin^2A or not.

If 3 cot A = 4, check whether (1 - tan^2 A) / (1 + tan^2 A) = cos^2 A - sin^2 A or not.

sin^(2)A*tan^(2)A+cos^(2)A*cot^(2) A= A) 1 + tan^(2)A + cot^(2) A B) tan^(2)A +cot^(2) A-1 C) 1 + sec^(2)A + tan^(2) A D) 1 + csc^(2)A + cot^(2) A

[ 90.sin A,cos A,tan A are in GP rArr cot^(6)A-cot^(2)A =[ 1) 2, 2) 1 3) 0, 4) -1]]