Home
Class 11
MATHS
1^3+1^2+1+2^3+2^2+2+3^3+3^2+3+......+ 3n...

`1^3+1^2+1+2^3+2^2+2+3^3+3^2+3+......+ 3n` terms =

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of n-terms: [(1/1)+(1^3 +2^3)/2 +(1^3 +2^3 +3^3)/3+....to n -terms

((1)/(2), (2)/(2) )/(1^3) + ((2)/(2) , (3)/(2) )/( 1^3 + 2^3) + ((3)/(2) , (4)/(2) ) / (1^(3) + 2^(3) + 3^(3) ) + ..... n terms

1^(3) + 1^(2) + 1+2^(3) + 2^(2) + 2+3^(2) + 3^(2) + 3+3… 3n terms =

If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then lim_(n->oo) [S_n]

(1^(2) )/( 1) + (1^(2) + 2^(2) )/(1+2) + (1^(2) + 2^(2) + 3^(2) )/( 1+ 2+ 3)+ …. + n terms =

The sum of (1/2 . 2/2)/(1^3) + (2/2 . 3/2)/(1^3 + 2^3) + (3/2 . 4/2)/(1^3 + 2^3 + 3^3) + ….. Upto n terms is equal to

If the sum of n terms of the series : (1)/( 1^(3)) +( 1+2)/( 1^(3) + 2^(3)) +(1+2+3)/(1^(3) + 2^(3) + 3^(3)) + "......." in S_(n) , then S_(n) exceeds 199 for all n greater than :

(1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2 + ….to 10 terms , the sum is :

(1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2 + ….to 10 terms , the sum is :