Home
Class 11
MATHS
Prove that :1^3+2^3+3^3++n^3={(n(n+1))/2...

Prove that :`1^3+2^3+3^3++n^3={(n(n+1))/2}^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that 1^3+2^3+3^3+.....+n^3=[(n(n+1))/2]^2

Prove by mathematical induction that 1^3+2^3+……+n^3=[(n(n+1))/2]^2

Using the principle of mathematical induction prove that : 1. 3+2. 3^2+3. 3^3++n .3^n=((2n-1)3^(n+1)+3)/4^ for all n in N .

By principle of mathematical induction,prove that 1^(3)+2^(3)+3^(3)+ . . .. +n^(3)=[(n(n+1))/(2)]^(2) for all ninNN

Prove that :1+2+3+...+n=(n(n+1))/(2)

Prove that 1^1*2^2*3^3....n^nle((2n+1)/3)^((n(n+1))/2) .

Prove that : 1+2+3++n=(n(n+1))/2

Prove that 1+2+3+.....n=(n(n+1))/(2)

Prove that 1^(1)xx2^(2)xx3^(3)xx xx n^(n)<=[(2n+1)/3]^(n(n+1)/2),n in N

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) n in N