Home
Class 12
MATHS
Let f(x)=int(0)^(x)3^t(3^(t)-4)(x-t)dt, ...

Let `f(x)=int_(0)^(x)3^t(3^(t)-4)(x-t)dt, (x>=0)`, if `x=a` is the point where `f(x)` attains its local minimum value then find the value of `3^a`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(0)^(1)|x-t|dt, then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

Let f(x)=int_(0)^(4)|x^(2)-4x-t|dt,x in(0,4) ,then the range of f(x) is