Home
Class 11
MATHS
Consider the regular hexagon ABCDEF with...

Consider the regular hexagon ABCDEF with centre at 0 (origin),then if `vec (AD)+vec (EB)+vec (FC)` is equal to `k(vec (AB))` .then k is

Promotional Banner

Similar Questions

Explore conceptually related problems

In a regular hexagon ABCDEF,vec AE

Given a regular hexagon ABCDEF with centre o,show that vec OB-vec OA=vec OC-vec OD

ABCDEF si a regular hexagon with centre at the origin such that A vec D + E vec B + F vec C = lambda E vec D . " Then, " lambda equals

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

ABCDEF is a regular hexagon with centre a the origin such that vec(AB)+vec(EB)+vec(FC)= lamda vec(ED) then lamda = (A) 2 (B) 4 (C) 6 (D) 3

vec j*vec k=

If ABCDEF is a regular hexagon,them vec AD+vec EB+vec FC equals 2vec AB b.vec 0 c.3vec AB d.4vec AB