Home
Class 12
MATHS
x^2+(2-k)x+k-(3)/(4) is a perfect square...

`x^2+(2-k)x+k-(3)/(4)` is a perfect square then `k=`
(A) `3`
(B) `1`
(C) `7`
(D) `5`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2)+k(2x+3)+4(x+2)+3k-5 is a perfect square,if k equals -

If x^(2) + 8x+ k is a perfect square , then find the value of k .

If (x +1) (x +2) (x +3) (x + k) + 1 is a perfect square, then the value of k is

If the sum of the roots of the equation x^2-(k+6)x+2(2k-1)=0 is equal to half of their product, then k= (a) 6 (b) 7 (c) 1 (d) 5

If (2k-1, k) is a solution of the equation 10 x-9y=12 , then k= (a) 1 (b) 2 (c) 3 (d) 4

If sin^(4)x + cos^(4)x=k then possible value of k is/are : (A) 1/2 (B) 1/4 (C) 1 (D) 7/10

If x^2+k(4x+k-1)+2=0 has equal roots, then k= (a) -2/3,\ 1 (b) 2/3,\ -1 (c) 3/2,1/3 (d) -3/2,\ -1/3

If f(x)={(log_(1-3x)(1+3x), x!=0),(=k ,x=0)) is continuous at x=0, then value of k equals (A) -1 (B) 1 (C) 2 (D) -2