Home
Class 12
MATHS
If f and its derivatives be differentiab...

If `f` and its derivatives be differentiable everywhere and `f'(2016)=f(2016)=(1)/(2016)` and `int_(0)^(2016)f(x)dx=1` then the value of sum of square of the digits of `int_(0)^(2016)x^(2)f''(x)dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)[f(x)+f(a-x)]dx=

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If int_(0)^( pi)f(x)dx=pi+int_(pi)^(1)f(t)dx, then the value of (L) is :

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

int_(0)^(1)(f(x))/(f(x)+f(1-x))dx=

If f(2-x)=f(2+x),f(4+x)=f(4-x) and int_(0)^(2)f(x)dx=5 then int_(0)^(50)f(x)dx is

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=