Home
Class 12
MATHS
If |Z-i|=sqrt(2) then arg((Z-1)/(Z+1)) i...

If `|Z-i|=sqrt(2)` then `arg((Z-1)/(Z+1))` is (where `i=sqrt(-1))` ; `Z` is a complex number )

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

Complex numbers z satisfy the equaiton |z-(4//z)|=2 The value of arg(z_(1)//z_(2)) where z_(1) and z_(2) are complex numbers with the greatest and the least moduli, can be

If z_(1)=1+i,z_(2)=sqrt(3)+i then arg((z_(1))/(z_(2)))^(50) is

Show that |(2z + 5)(sqrt2-i)|=sqrt(3) |2z+5| , where z is a complex number.

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If z=((1+i sqrt(3))/(1+i))^(25), then arg(z) is equal to

If arg(z_(2)-z_(1))+arg(z_(3)-z_(1))=2arg(z-z_(1)) where z,z_(1),z_(2) and z_(3) ,are complex numbers, then the locus of z is

If z=((1+i sqrt(3))^(2))/(4i(1-i sqrt(3))) is a complex number then a.arg(z)=(pi)/(4) b.arg(z)=(pi)/(2)c|z|=(1)/(2)d.|z|=2