Home
Class 11
MATHS
Value of sin^(6)x+cos^(6)x+sin^(4)x+cos^...

Value of `sin^(6)x+cos^(6)x+sin^(4)x+cos^(4)x+3+5sin^(2)x cos^(2)x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (sin^(6)x+cos^(6)x)/(sin^(2)x cos^(2)x)

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx is equal to

Find the value of : 2 (sin^(6) x + cos^(6)x) - 3 (sin^(4) x + cos ^(4)x) + 2 .

Solve 4 cos^(2)x+6 sin^(2)x=5 .

int (sin ^ (2) x cos ^ (2) x) / ((sin ^ (5) x + cos ^ (3) x sin ^ (2) x + sin ^ (3) x cos ^ (2) x + cos ^ (5) x) ^ (2)) dx

Show That 2(sin^(6)x+cos^(6)x)-3(sin^(4)x+cos^(4)x)+1=0

Show that 2(sin^(6)x+cos^(6)x)-3(sin^(4)x+cos^(4)x)+1=0

The value of int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is