Home
Class 11
MATHS
If F(x)=f(x)g(x) and f'(x)g'(x)=c, then ...

If `F(x)=f(x)g(x)` and `f'(x)g'(x)=c`, then `(F'''(x))/(F(x))` is equal to (where `f'(x)` denotes differentiation w.rt.`x` and `c` is constant)
`(i)` `(f')/(f)+(g')/(g)`
` (ii) (f'')/(f)+(g'')/(g)`
` (iii) (f''')/(f)-(g''')/(g)
`
` (iv) (f''')/(f)+(g''')/(g)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x)=|x-1| and g(x)=f(f(f(x))) then for x>2,g'(x)=

If f(x)=(1)/((1-x)) and g(x)=f[f{f(x))} then g(x) is discontinuous at

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(x)=3x+1 and g(x)=x^(3)+2 then ((f+g)/(f*g))(0) is:

If f(x)=|x-8| and g(x)=f(f(x))AA x>16 then g'(x) equals

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x)=px+q and g(x)=rx+s and f[g(x)]=g[f(x)]hArr