Home
Class 11
MATHS
The value of definite integral I=int(-1...

The value of definite integral `I=int_(-1/2)^(1/2)sin^(2)x log((1-x)/(1+x))dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

The value of definite integral int_(-1)^(1)(7-(2x-1)dx is equal to

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

If the value of the definite integral int_(0)^(1)(sin^(-1)sqrt(x))/(x^(2)-x+1)dx is (pi^(2))/(sqrt(n)) (where n in N), then the value of (n)/(27) is

Evaluate the following integrals: int_(-1/2)^(1/2) cos x log ((1+x)/(1-x))dx

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

The integral int_(-(1)/(2))^((1)/(2))([x]+log((1+x)/(1-x)))*dx equals