Home
Class 12
MATHS
If int((2x-8)/((x-1)(x-3)(x-5)(x-7)+16))...

If `int((2x-8)/((x-1)(x-3)(x-5)(x-7)+16))dx=lambda-(1)/(f(x))` Where f(x) is of the form of `ax^(2)+bx+c`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is

int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x))

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

int(x+1)/(x(1+xe^(x))^(2))dx=log|1-f(x)|+f(x)+c, then f(x)=

If I=int(dx)/(x^(3)(x^(8)+1)^(3//4))=(lambda(1+x^(8))^((1)/(4)))/(x^(2))+c (where c is the constant of integration), then the value of lambda is equal to

If int(x^(2)+1)/((x-1)^(2)(x+3))dx=(3)/(8)log|x-1|-(1)/(2(x-1))+F(x)+C then 8F'(2) equals to

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

If f(x)=(x-1)/(2x^(2)-7x+5) for x!=1 and f(x)=-(1)/(3) for x=1 then f'(1)=