Home
Class 12
MATHS
The function f(x) =p [x+1] +q [x-1] wher...

The function `f(x) =p [x+1] +q [x-1]` where [x] is the greatest integer function, and `lim _(xto1+) f(x) =lim _(x to 1-) f(x)= f(1)` when-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

Let f(x)=|x|+[x-1], where [ . ] is greatest integer function , then f(x) is

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

Let f(x)=x(-1)^([1/x]);x!=0 where [.] denotes greatest integer function,then lim_(x rarr0)f(x) is :

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is the greatest integer function) is