Home
Class 11
MATHS
1+i^2+i^4+i^6+i^8++i^(20)...

`1+i^2+i^4+i^6+i^8++i^(20)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of following expressions: i^(49)+i^(68)+i^(89)+i^(110) (ii) i^(30)+i^(80)+i^(120) (iii) i^+i^2+i^3+i^4 (iv) i^5+i^(10)+i^(15) (v) (i^(592)+i^(590)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(576)+i^(574)) (vi) 1+i^2+i^4+i^6+i^8+doti^(20) (vii) (1+i)^6+(1-i)^3

If (1+i^2 +i^4 +i^6 +i^208)=a +ib ,then the value of (a,b) is

Find the value of ( i^2 + i^4 + i^6 + i^7 ) / ( 1 + i^2 + i^3 ) is ( a ) 1 - i ( b ) 1 + i ( c ) 2 - i ( d ) 2 + i

1 + i^(2) + i^(4) + i^(6) = 0 .

Find the value of i^4 + i^5 + i^6 + i^7

Find the value of : i^4 + i^5 + i^6 + i^7