Home
Class 12
MATHS
Let f(x)=x^4+x^2,g(x)=x^2+x If g(sin x)=...

Let `f(x)=x^4+x^2,g(x)=x^2+x` If `g(sin x)=1` then the value of `f(cos x)` is Only One Option Is Correct

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=cos x and g(x)=x^(2)

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(x) is

If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

Let f(x)=x^(107)+x^(53)+7x+2 . If g(x) is inverse of function f(x) , then the value of f(g'(2)) is

If f(x) = (X^(2))/(1+x^(2)) and g(x) = sin x then int fo g (x) cos x dx is

Let f(x)=1+x^(2) and f(g(x))=1+x^(2)-2x^(3)+x^(4). A possible value of g(3) is

Let f(x) = x^(2) - 5x + 6, g(x) = f(|x|), h(x) = |g(x)| The set of values of x such that equation g(x) + |g(x)| = 0 is satisfied contains

If f(x)=2x+tan x and g(x) is the inverse of f(x) then value of g'((pi)/(2)+1) is

Let f(x)=x^(2)-ax+3a-4 and g(a) be the least value of f(x) then the greatest value of g(a)