Home
Class 11
MATHS
If the function f(x)=(sqrt(x^(2)+kx+1))/...

If the function `f(x)=(sqrt(x^(2)+kx+1))/(x^(2)-k)` is continuous for every `x in R` , then possible integral values of `k`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF the function f(x) =sqrt(x^2+kx+1)/(x^2-k) is continuous for every x epsilon R then 1) kepsilon [-2,0) 2) kepsilon (0,oo) 3) kepsilon (-oo,0) 4) kepsilon R

Let f(x)=(sqrt(log(x^(2)+kx+k+1)))/(x^(2)+k) If f(x) is continuous for all x in R then the range of k is

If the function f(x)=((e^(kx)-1)tankx)/(4x^(2)),x ne 0 =16" "x=0 is continuous at x=0, then k= . . .

If the inequality (x^(2)-kx-2)/(x^(2)-3x+4)>-1 for every x in R and S is the sum of all integral values of k, If the inequalitythen find the value of S^(2)

If the function f(x) = {((1-cos kx)/(x sin x),x ne 0),((1)/(2), x = 0):} is continuous at x = 0, then the value (s) of k are:

If the function f(x)={((sqrt(2+cosx)-1)/(pi-x)^2 ,; x != pi), (k, ; x = pi):} is continuous at x = 1, then k equals:

If the function f(x) = {((cosx)^(1/x), ",", x != 1),(k, ",", x = 1):} is continuous at x = 1, then the value of k is

If quad f(x)=(2)/(sqrt(3))tan^(-1)((2x+1)/(sqrt(3)))-ln(x^(2)+x+1)+(k^(2)-5k+3)x+10 is a decreasing function for all x in R .then possible value of k is

If the function f(x)={((1-cosx)/(x^(2))",","for "x ne 0),(k,"for " x =0):} continuous at x = 0, then the value of k is

If f(x)=x^(3)+x^(2)+kx+4 is always increasing then least positive integral value of k is