Home
Class 11
MATHS
A=[[0,1],[1,0]] and |A^(2020)|=2K then K...

A=`[[0,1],[1,0]]` and `|A^(2020)|`=2K then K=

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[2,4-1,k]] and A^(2)=0, then find the value of k.

If A=[[3k,0],[k,k]] and A^(-1)=[[1,0],[-1,3]] , then the value of k is equal to

If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=

If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)] , then find 'k' so that k^(2)=5A-21I .

If matrix A=[{:(3,2,4),(1,2,-1),(0,1,1):}]and A^(-1)=1/k adj A, then k is

If A=[[0,0],[0,1]] ,then the matrix,given by B=I+A+A^(2)+.......A^(K) ,is

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

If A= [[0,0],[0,1]] then the matrix, given by B = 1 + A+ A^(2)+.......A^(k) , is

If k>1, and the determinant of the matrix A^(2)=[[k,k alpha,alpha0,alpha,k alpha0,0,k]] is (:k^(2) then | alpha|=