Home
Class 11
MATHS
Given the matrix A = [[x,3,2],[1,y,4],[2...

Given the matrix `A = [[x,3,2],[1,y,4],[2,2,z]]cdot` If `xyz = 60` and
`8x + 4y + 3z = 20, ` then `A(adjA)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Given the matrix A=[(x,3,2),(1,y,4),(2,2z)]. If xyz=60 and 8x+4y+3z=20, then A(adjA) is equal to (a) [(6,4,0,0),(0,6,4,0),(0,0,6,4)] (b) [(8,8,0,0),(0,8,8,0),(0,0,8,8)] (c) [(6,8,0,0),(0,6,8,0),(0,0,6,8)] (d) [(3,4,0,0),(0,3,4,0),(0,0,3,4)]

Given that matrix A[(x,3,2),(1,y,4),(2,2,z)] . If xyz=60 and 8x+4y+3z=20 , then A(adj A) is equal to

[" Let "A" be a square matrix "],[" where "],[A=[[x,3,2],[1,y,4],[2,2,z]]" ,"xyz=60,8x+4y+3z=:],[" ,then "^(A)(adjA)" is equal to "]

Let matrix A=[(x,3,2),(1,y,4),(2, 2,z)], " if " xyz=2lambda and 8x+4y+3x=lambda+28 , then (adj A) A equals :

2x + y + z = 8, xyz = -4.3x + 2y + z = 10

8x + y + 2z = 4x + 2y + z = 1x + y + z = 2

If x:y=3:2 and y:z=8:9 , find x:y:z