Home
Class 12
MATHS
let log(0.bar3) x = -log3 5, then x is:...

let `log_(0.bar3) x` = -`log_3 5,` then x is:

Promotional Banner

Similar Questions

Explore conceptually related problems

let log_(0.3)x=-log_(3)5, then x is:

If log_(5) log_(5) log_(3) x = 0 , then value of x is

If log_(5)[log_(3)(log_(2)x)]=1 , then x is:

if log_(3) (x-5) + log_(3) (x+2) =log_(3)8 then x = ______

If log_2 log_3 log_4 (x+1) =0, then x is :-

If log_(5)[log_(3)(log_(2)x)]=1 then x is

If log_3 2+log_3 (2^x-7/2)=2log_3 (2^x-5) then x=

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

Let x=(anti log_2 3)*log_3 2, y=log_2(log_3 512))"and"z=log_5 3*log_7 5*log_2 7, then xyz is equal to