Home
Class 12
MATHS
If a^(log3 7)=9,then a^((log3 7)^2) is e...

If `a^(log_3 7)=9`,then `a^((log_3 7)^2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

value of 7^[{sqrt(log_7 3)+ sqrt(log_14 3)}*2^sqrt(log_14 3)]/3^{sqrt(log_3 7)+sqrt(log_3 14)) is equal to:

Let x=(((81^(1/( (log_(5)9))+3^(3/( log_(sqrt6)3)))/(409)).( (sqrt7)^((2)/(log_(25)7))-125^( log_(25)6))) then value of log_(2)x is equal to :

Let x=(((81^(1/( (log_(5)9))+3^(3/( log_(sqrt6)3)))/(409)).( (sqrt7)^((2)/(log_(25)7))-125^( log_(25)6))) then value of log_(2)x is equal to :

If 3^(((log_3 7))^x)=7^(((log_7 3))^x) , then the value of x will be

If 3^(((log_3 7))^x)=7^(((log_7 3))^x) , then the value of x will be

Given that log_(2)3=a,log_(3)5=b,log_(7)2=c then the value of log_(140)63 is equal to

The value of (3^(4log_(9)(7))+25^(2log_(655)(18)) is equal to