Home
Class 12
MATHS
The number of values of x satisfying 3^(...

The number of values of x satisfying `3^((log_3 x)^2) = 2^((log_2 x)^2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value(s) of x, satisfying 3^(4log_9(x+1))=2^(2log_2 x)+3

4.The value of x, satisfying 3^(4log_(9)(x+1))=2^(2log_(2)x)+3

Find the number of values of x satisfying 2(log_(2)x)^(2)+(1-sqrt(2))log_(2)x^(2)=2sqrt(2)

The value of x satisfying abs(x-1)^(log_3 x^2-2log_x 9)=(x-1)^7 is

The value of x satisfying |x-1|^(log_(3)x^(2)-2log_(x)9)=(x-1)^(7) is

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :

The number of value(s) of x satisfying 1-log_(3)(x+1)^(2)=1/2log_(sqrt(3))((x+5)/(x+3)) is

The number of value(s) of x satisfying 1-log_9(x+1)^2=1/2log_(sqrt(3))((x+5)/(x+3)) is

If x_(1) and x_(2) are the two values of x satisfying equation 3^((log_(3)x)^(2))+x^(log_(3)x)=162 then