Home
Class 12
MATHS
The expression (tanalpha+tanbeta)cot(alp...

The expression `(tanalpha+tanbeta)cot(alpha+beta)+(tanalpha-tanbeta)cot(alpha-beta)` is independent of both `alpha and beta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2cos beta=cos(2 alpha+beta) then 3tan(alpha+beta)+cot alpha is independent of -

Prove that tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)

Prove that tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)

Prove that (tan alpha+tan beta)/(cot alpha+cot beta)=tan alpha tan beta

if tan alpha = 2tanbeta show that (sin(alpha+beta))/(sin(alpha-beta)) = 3

If 2tanalpha=3 tanbeta , show that tan(alpha-beta)=(sin2beta)/(5-cos2beta)

If tanalpha=kcotbeta , then (cos(alpha-beta))/(cos(alpha+beta)) is equal to

If 2tanbeta+cotbeta=tanalpha , prove that cotbeta=2tan(alpha-beta)dot

tan alpha=cot beta=a, find (alpha+beta)

If 3sinbeta=sin(2alpha+beta) then tan(alpha+beta)-2tanalpha is (a)independent of alpha (b)independent of beta (c)dependent of both alpha and beta (d)independent of both alpha and beta