Home
Class 12
MATHS
Q. if tan^-1 a+tan^-1 b+tan^-1 c=pi, the...

Q. if `tan^-1 a+tan^-1 b+tan^-1 c=pi`, then prove that `a+b+c=abc`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

If tan ^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

If in triangleABC, tan^(-1)(a/(b+c))+ tan^(-1)(c/(a+b)) = pi/4 , then prove that, the triangle is right angled.

If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4 where a, b, c , are the sides of Delta ABC",then" Delta ABC is

If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4 where a, b, c , are the sides of Delta ABC",then" Delta ABC is

If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4 where a, b, c , are the sides of Delta ABC",then" Delta ABC is

If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4 where a, b, c , are the sides of Delta ABC",then" Delta ABC is