Home
Class 12
MATHS
lim(y rarr x)(sin^(2)y-sin^(2)x)/(y-x)=...

lim_(y rarr x)(sin^(2)y-sin^(2)x)/(y-x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=lim_(y rarr x)(sin^(2)y-sin^(2)x)/(y^(2)-x^(2)), then int4xf(x)dx equals (i)cos2x+C(ii)2cos2x+C(iii)-cos2x+C(iv)-2cos2x+C

the value of lim_(x rarr y)(sin^(2)x-sin^(2)y)/(x^(2)-y^(2)) equals

underset(y to x)lim (sin^(2)y-sin^(2)x)/(y-x)=

lim_(x rarr0)(sin(2+x)-sin(2-x))/(x)

Evaluate the following : lim_(x rarr 0)(sin(2+x)-sin(2-x))/x .

lim_(y rarr x)((y^(y)-x^(x))/(y-x))=

lim_(x rarr0)(x^(2)sin^(2)x)/(x^(2)-sin^(2)x)

lim_(x rarr0)(sin^(2)x-x^(2))/(x^(2)sin^(2)x)

lim_(x rarr0)(sin(2+x^(2))-sin(2-x^(2)))/(x)

lim_(x rarr0)((2+x)sin(2+x)-2sin2)/(x)=