Home
Class 12
MATHS
Lt(ntooo)((1^2 + 2^2 + 3^3+...+n^2))/((1...

`Lt_(ntooo)((1^2 + 2^2 + 3^3+...+n^2))/((1^3 + 2^3 + 3^3+...+n^3))=`

A

0

B

1

C

`-1`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    KCET PREVIOUS YEAR PAPERS|Exercise MCQs|59 Videos
  • MODEL TEST PAPER - 7

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

If the sum of n terms of the series : (1)/( 1^(3)) +( 1+2)/( 1^(3) + 2^(3)) +(1+2+3)/(1^(3) + 2^(3) + 3^(3)) + "......." in S_(n) , then S_(n) exceeds 199 for all n greater than :

Let S_(n) = ( 1)/( 1^(3)) + ( 1+2)/( 1^(3) + 2^(3)) +"...." + ( 1+ 2 + "...." + n)/(1^(3) +2^(3)"...."+n^(3)), n = 1,2,3,"....." , Then S_(n) is not greater than :

1 . 2+2 . 3+3 . 4+.. .. to n terms =

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

((1)/(2) . (2)/(2))/(1^(3))+((2)/(3) . (3)/(2))/(1^(3)+2^(3)) +((3)/(2) . (4)/(2))/(1^(3)+2^(3)+3^(3))+.. . . to n terms