Home
Class 12
MATHS
Let y = acos(log x) + bsin (logx), then...

Let y = acos(log x) + bsin (logx)`, then

A

`x^2 (d^2y)/(dx^2) +x(dy)/dx + y = 0`

B

`(d^2y)/(dx^2) + x(dy)/(dx) = y = 0`

C

`x^2(d^2y)/(dx^2) -x(dy)/dx + y = 0`

D

`x^2 (d^2y)/(dx^2) - x (dy)/dx - xy = 0`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    KCET PREVIOUS YEAR PAPERS|Exercise MCQs|59 Videos
  • MODEL TEST PAPER - 7

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If y = a cos (log x) + b sin (log x) , show that x^(2) y_(2) + xy_(1) + y = 0 .

If y=sin(logx) , then

If y=3 cos(log x)+4 sin(log x), show that x^(2)y_(2)+xy_(1)+y=0

If y=3 cos(log x)+4sin(logx) show that x^(2)y_(2)+xy_(1)+y=0

If y = cos(log sin x), then dy/dx =

If y=5cos(logx)+7sin(logx) show that x^2y_2+xy_1=0

If y = log log (log x), then dy/dx =