Home
Class 12
MATHS
The value of the integrate intsqrt((1-x)...

The value of the integrate `intsqrt((1-x)/(1+x))` is

A

`sin^(-1)x sqrt(1 - x^2) + C`

B

`cos^(-1) + sqrt(1- x^2) +C`

C

`sin^(-1)x + log sqrt(1 -x^2) + C`

D

`(sin^(-1)x)^2 + C`.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    KCET PREVIOUS YEAR PAPERS|Exercise MCQs|59 Videos
  • MODEL TEST PAPER - 7

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_0^1 sqrt((1 - x)/(1 + x))dx is :

The value of the integral int (dx)/(x (1 + log x)^(2)) is equal to

The value of the integral int_(1/n)^(((an-1))/(n)) sqrtx/(sqrt(a-x) + sqrtx) dx is

The value of the integral int e^(tan^(-1) x) * ((1 + x + x^(2)))/((1 + x^(2))) dx is equal to

The value of the integral int_(1//3)^(1) ((x - x^3)^(1/3))/(x^4) dx is

The value of the integral I = int_0^1 x (1 - x)^(n) dx is :

The value of the integral int_0^(oo) log(x+1/x) (dx)/(x^2 +1) is

Choose the correct answer The value of the integral int_(1/3)^(1)((x-x^(3))^(1/3))/(x^(4))dx is

The value of the integral underset(0)overset(1)int(1)/(x^(2)+2x cos alpha +1)dx is equal to