Home
Class 12
MATHS
If A = {:[(cos^3theta,sintheta),(-sin^3t...

If A = `{:[(cos^3theta,sintheta),(-sin^3theta,cos^3theta)]:}` then `A^3` =

A

`{:[(cos^3theta,sin^3theta),(-sin^3theta,cos^3theta)]:}`

B

`{:[(cos^2 thetasintheta,sin^2thetacostheta),(-sin^2thetacostheta,cos^2thetasintheta)]:}`

C

`{:[(cos3theta,sin3theta),(-sin3theta,cos3theta)]:}`

D

`{:[(sin3theta,cos3theta),(-cos3theta,sin3theta)]:}`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    KCET PREVIOUS YEAR PAPERS|Exercise MCQs|59 Videos
  • MODEL TEST PAPER - 7

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If A_(theta) = [(cos theta ,sin theta ),(-sin theta ,cos theta )] then A_(alpha)A_(beta) equals :

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

The multiplicative inverse of : A = [(cos theta , -sin theta ),(sin theta , cos theta )] is :

Simplify : cos theta[(cos theta,sin theta),(-sin theta,cos theta)]=sin theta[(sin theta,-cos theta),(cos theta,sin theta)]

(3 cos theta+cos 3 theta)/(3 sin theta-sin 3 theta)=

Evaluate the following determinants: (b) |(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1

Let f(theta)=sintheta(sintheta+sin3theta),"then"f(theta) :

If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(3)) , then value of theta is

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is