Home
Class 12
MATHS
The radical axis of the circles x^(2)+...

The radical axis of the circles
`x^(2)+y^(2)+2x+2y+1=0`and
`x^(2)+y^(2)-10x-6y+14=0` is

A

`4x+3y-11=0`

B

`3x-4y+11=0`

C

`12x-8y+13=0`

D

`12x+8y-13=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 5

    KCET PREVIOUS YEAR PAPERS|Exercise Mathematics|60 Videos
  • MODEL TEST PAPER 9

    KCET PREVIOUS YEAR PAPERS|Exercise Mathematics|60 Videos

Similar Questions

Explore conceptually related problems

The radical axis of the circleS x^(2)+y^(2)+4 x=1 and 4 x^(2)+4 y^(2)=9 is

The slope of the radical axis of the circleS x^(2)+y^(2)+3 x+4 y-5=0 and x^(2)+y^(2)-5 x+5 y-6=0 is

The radical axis of the circleS x^(2)+y^(2)+3 x+4 y-5=0 x^(2)+y^(2)-5 x+5 y-6=0 is

If the radical axis of the circles x^(2)+y^(2)+2gx + 2fy + c = 0 and 2x^(2) + 2y^(2) + 3x + 8y + 2c =0 touches the circle x^(2)+ y^(2)+2x+2y + 1 = 0, then

The radius of the circle x^(2) + y^(2) + 4x + 6y +13 = 0 is...

Prove that the circles x^(2) +y^(2) - 4x + 6y + 8 = 0 and x^(2) + y^(2) - 10x - 6y + 14 = 0 touch at the point (3,-1)

The two circles x^(2) + y^(2) -2x + 6y + 6 = 0 and x^(2) + y^(2) -5x + 6y + 15 = 0

The radical axis of the circles C_1 =x^2 + y^2 + 4x + 8 y + 6 = 0 and C_2 = 2x^2 + 2y^2 + 6x + 6y - 3 = 0 is

The number of common tangents to the circles x^(2) + y^(2) = 4 and x^(2) +y^(2) - 6x - 8y -24 =0 is,

If the radical axis of the circles x^2+y^2+2gx+2fy+c=0 and 2x^2+2y^2+3x+8y+2c=0 touches the circle : x^2+y^2+2x+2y+1=0 , then :