Home
Class 12
MATHS
Q. f={(x+a if x<0), (x-11 if x>=0) g(x...

Q. f={`(x+a if x<0)`, `(x-11 if x>=0)` `g(x)={(x+1 if x<0),(x-1)^2 if x<0)` where a and b are non-negative real numbers. Determine the composite function `gof`. If `(gof)(x)` is continuous for all real x, determine the values of a and b, Further for these values of a and b, is `gof` differentiable at x=0? Justify your answer.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=1+x-[x] and f(x)=-1 if x lt 0 =0 if x=0 then f[g(x)]= =1 if x gt 0

If f,g:R to R are defined f(x) = {(0 if , x in Q),(1 if, x in Q):}, g(x) = {(-1 if , x in Q),(0 if, x !in Q):} then find (fog)(pi)+(gof)(e ) .

Let f(x)= {(1, x in Q), (0, x in R-Q):} and g(x)= {(1, x in R-Q), (0, x in Q):} , find (f+g)(x) and (fg)(x).

Let g(x) =1+x-[x] and f(x) ={{:(-1, if, x lt 0),(0, if, x=0),(1, if, x gt 0):} , then (f(g(2009)))/(g(f(2009)) =

If f(x) =px + q and g(x) =rx +s and f[g(x)]=g[f(x)]

Show that int_0^a f(x) g(x) d x=2 int_0^a f(x) d x , if f and g are defined as f(x)=f(a-x) and g(x)+g(a-x)=4

f(x)={x+1,x =0 and g(x)={x^(3),x =1 Then find f(g(x)) and find its domain and range.

If f(x)=x^(2)-4x+14, g(x) = x - 1, q(x) = x - 3 and f(x) = g(x) q(x) + r(x), then find r(x).

Let F(x) = f(x) +g(x) , G(x) = f(x) - g( x) and H(x) =(f( x))/( g(x)) where f(x) = 1- 2 sin ^(2) x and g(x) =cos (2x) AA f: R to [-1,1] and g, R to [-1,1] Now answer the following If the solution of F(x) -G (x) =0 are x_1,x_2, x_3 --------- x_n Where x in [0,5 pi] then