Home
Class 13
MATHS
[" Prove that the greatest value of "xy"...

[" Prove that the greatest value of "xy" is "c^(3)/sqrt(2ab)" ,"],[" if "a^(2)x^(4)+b^(2)y^(4)=c^(6)" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

Prove that the greatest value of x y is c^3//sqrt(2a b)dot if a^2x^4+b^4y^4=c^6dot

Prove that the greatest value of x y is c^3//sqrt(2a b)dot if a^2x^4+b^4y^4=c^6dot

Find the greatest common factors of the monomials 6x^(3)a^(2)b^(2)c,8x^(2)ab^(3)c^(3)

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(3))/(2ab) (b) (c^(3))/(sqrt(2ab)) (c) (c^(3))/(ab) (d) (c^(3))/(sqrt(ab))

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(2))/(sqrt(ab)) (b) (c^(3))/(ab)(c^(3))/(sqrt(2ab)) (d) (c^(3))/(2ab)

Prove that the curves y^(2)=4ax and xy=c^(2) cut at right angles if c^(4)=32a^(4) .

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (a) (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)