Home
Class 12
MATHS
[" 7.If "I=[[1,0],[0,1]]" and "E=[[0,1],...

[" 7.If "I=[[1,0],[0,1]]" and "E=[[0,1],[0,0]]" then show that "(al+bE)^(3)=a^(3)I+],[3a^(2)bE," where "1" is unit matrix of order "z" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] then show that (aI + bE)^(3) = a^(3)I+3a^(2)bE where I is identify matrix of order 2.

If I=[[1,0],[0,1]] , E=[[0,1],[0,0]] then (aI+bE)^(3)=

If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] prove that (2I+3E)^3=8I+36E

If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] , prove that (a I + bE)^3 = a^3 I + 3a^2 b E .

If A= [[5,2],[-1,2]] and I= [[1,0],[0,1]] show that (A-3I) (A-4I)=0

If A= [[6,2],[-1,3]] and I= [[1,0],[0,1]] show that (A-4I) (A-5I)=0

Let A=[(0,1),(0,0) ] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

If A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-3I=O , where I is unit matrix of order 3

If A=[(1, -2, 1),(0, 1 ,-1),(3, -1, 1)] then find A^(3)-3A^(2)-A-3I where I is unit matrix of order 3.