Home
Class 6
MATHS
IF f(4)=g(4)=2; f'(4)=9;g'(4)=6 then lim...

IF` f(4)=g(4)=2`; `f'(4)=9;g'(4)=6` then `lim_(xrarr4)(sqrtf(x)-sqrt(g(x)))/(sqrtx-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(4)=g(4)=2;f'(4)=9;g'(4)=6 then lim_(x rarr4)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to

If f(4)=g(4)=f'(4)=9,g'(4)=6, then (lim_(x rarr)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to 3sqrt(2)b(3)/(sqrt(2))c.0d .does not exists

If f(4)=4 , f'(4)=1 , then find lim_(xrarr4)(2-sqrtf(x))/(2-sqrtx)

If f(4)=g(4)=2 , f^(prime)(4)=9,g^(prime)(4)=6, then (lim)_(xto4)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to (a) 3sqrt(2) b. 3/(sqrt(2)) c. 0 d. does not exists

If f(9) =9, f^(')(9) = 4 , then lim_(x rarr 9)(sqrt(f(x))-3)/(sqrtx - 3) =

If f(9)=9,f'(9)=4 , then evaluate lim_(xto9)(sqrtf(x)-3)/(sqrtx-3) .

If f(2)=4,g(2)=9andf'(2)=2g'(2) , then evaluate lim_(xto2)(sqrt(f(x))-2)/(sqrt(g(x))-3) .

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to