Home
Class 12
MATHS
" 6."f(x)=|x|+|x-1|" at "x=1...

" 6."f(x)=|x|+|x-1|" at "x=1

Promotional Banner

Similar Questions

Explore conceptually related problems

let ( f(x) = 1-|x| , |x| 1 ) g(x)=f(x+1)+f(x-1)

If f(x)=x Tan^(-1) x" then "underset(x to 1)"Lt" (f(x-f(1))/(x-1)=

If f(x)=x^(1/(x-1))" for "x ne 1 and if f is continuous at x=1 then f(1)=

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 ;0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 ;0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

The function f(x)=x^6-x-1 cuts the x-axis

The function f(x)=x^(6)-x-1 cuts the x - axis