Home
Class 12
MATHS
People living at Mars, instead of the us...

People living at Mars, instead of the usual definition of derivative `Df(x)`, define a new kind of derivative `D`*`f(x)` by the formula `D`*`f(x)` = `Lim_(h->0) (f^2(x+h) - f^2(x))/h` where `f^2(x)` means `[f(x)]^2`. If `f(x)=x ln x` then `D`*`f(x)|_(x=e)` has the value `(A)``e` `(B)` `2e` `(C)` `4e` `(D)` none

Answer

Step by step text solution for People living at Mars, instead of the usual definition of derivative Df(x), define a new kind of derivative D*f(x) by the formula D*f(x) = Lim_(h->0) (f^2(x+h) - f^2(x))/h where f^2(x) means [f(x)]^2. If f(x)=x ln x then D*f(x)|_(x=e) has the value (A)e (B) 2e (C) 4e (D) none by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

people living at Mars ,instead of the usual definition of derivative Df(x) define a new kind of derivative Df(x) by the formula Df(x)=lim_(h->0) (f^2(x+h)-f^2(x))/h where f^x means [f(x)]^2. If f(x)=xInx then Df(x)|_(x=e) has the value (a) e (b) 2e (c) 4e (d) non

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Knowledge Check

  • Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D**F(x) by the formula D** (x) = lim_( h to 0) ( f^(2) ( x + h) - f^(2) (x))/( h) , where f^(2) (x) means [ f (x)]^(2) and if f(x) = x log x, then D** f(x) |_(x = e) has the value

    A
    e
    B
    2e
    C
    4e
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

    Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

    Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

    Instead of the usual defination of derivatie Df(x), if we define a new kind of derivatie D^(**)F(x) by the formula D^(**)(x)=lim_(hrarr0) (f^(2)(x+h)-f^(2)(x))/(h)." where "f^(2)(x)" means "[f(x)]^(2) and if f(x)=x log x, then D^(**)f(x)|_(x=e) has the value

    Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)(x+h)-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is

    Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)(x+h)-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is

    Let the derivative of f(x) be defined as D*f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) where f^(2)(x)=(f(x))^(2) if u=f(x),v=g(x), then the value of D*{u.v} is