Home
Class 9
MATHS
If 2sin2 theta=sqrt(3) ,then the value o...

If `2sin2 theta=sqrt(3)` ,then the value of `theta` is :

A

`90^(@)`

B

`30^(@)`

C

`45^(@)`

D

`60^(@)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    FULL MARKS|Exercise THINKING CORNER|4 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise ADDITIONAL QUESTIONS SOLVED|5 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise EXERCISE - 6.4|6 Videos
  • STATISTICS

    FULL MARKS|Exercise Assignment (Answer the following question)|10 Videos

Similar Questions

Explore conceptually related problems

If tan(theta/2)=2-sqrt3 ,find the value of sintheta .

If 0 leq theta leq pi and sin(theta/2)=sqrt(1+sintheta)-sqrt(1-sintheta) ,then the possible value of tan theta , is -

If cosec theta = 2/(sqrt3) , then theta = …..

If sin theta = 3 sin ( theta + 2 alpha) , then the value of tan (theta + alpha ) + 2 tan alpha is

If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))) , then the general value of theta(n in Z)

If sin theta + cosec theta =2 , then the value of sin ^6 theta + cosec ^6 theta is equal to

If cos theta+sin theta=sqrt(2)cos theta then prove that cos theta-sin theta=sqrt(2)sin theta

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is