Home
Class 8
MATHS
a^(3)+ab(1-2a)-2b^(2)...

a^(3)+ab(1-2a)-2b^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

a^(3)+3a^(2)b+3ab^(2)+b^(3) divided by a^(2)+2ab+b^(2) is

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

If a+b=1 , then a^(4)+b^(4)-a^(3)-b^(3)-2a^(2)b^(2)+ab is equal to :

Simplify: a^(2)b(a-b^(2))+ab^(2)(4ab-2a^(2))-a^(3)b(1-2b)

Simplify each of the following a^(2)b(a - b^(2)) + ab^(2)(4ab - 2a^(2)) - a^(3)b(1-2b)

If |a| lt 1, |b| lt 1 , then show that a(a+b) + a^(2) (a^(2) + b^(2)) + a^(3)(a^(3) + b^(3)) +… = (a^(2))/(1-a^(2)) + (ab)/(1- ab)

Simplify: a^(2)b(a^(3)-a+1)-ab(a^(4)-2a^(2)+2a)-b(a^(3)-a^(2)-1)