Home
Class 10
MATHS
If (cos theta)/(1+sintheta)=(1)/(a) then...

If `(cos theta)/(1+sintheta)=(1)/(a)` then prove that `(a^(2)-1)/(a^(2)+1)=sintheta`.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER -3

    FULL MARKS|Exercise PART - II|14 Videos
  • SAMPLE PAPER -20 (UNSOLVED)

    FULL MARKS|Exercise PART-IV|2 Videos
  • SAMPLE PAPER -4

    FULL MARKS|Exercise Part- IV|1 Videos

Similar Questions

Explore conceptually related problems

If sintheta(1+sin^(2)theta)=cos^(2)theta , then prove that cos^(6)theta-4cos^(2)theta+8cos^(2)theta=4

If tantheta=ntanalpha and sintheta=msinalpha then prove that cos^(2)theta=(m^(2)-1)/(n^(2)-1),n!=+-1.

IF sintheta=sqrt3/2 , then cos theta =?

If 2 cos theta=x+1/x then prove that cos 2 theta=1/2 (x^(2)+1/x^(2))

Prove that (tan^(2)theta-1)/(tan^(2)theta+1)=1-2cos^(2)theta

If sintheta+costheta=p and sectheta+costheta=q , then prove that q(p^(2)-1)=2p

costheta -sintheta -cottheta +1=0

Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

If x=a(theta+sintheta), y=a(1-costheta) then prove that at theta=pi/2, y''=1/a .

If sintheta+costheta=sqrt(3) , then prove that tantheta+cottheta=1