Home
Class 10
MATHS
A function f:[-7, 6) to R is defined as ...

A function `f:[-7, 6) to R` is defined as follows.
`f(x)={(x^(2)+2x+1, -7lexlt-5), (x+5, -5lexle2), (x-1, 2ltxlt6):}`
Find `2f(-4)+3f(2)`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7 (UNSOLVED)

    FULL MARKS|Exercise Part -IV|3 Videos
  • SAMPLE PAPER 7 (UNSOLVED)

    FULL MARKS|Exercise Part-II|12 Videos
  • SAMPLE PAPER 19 (UNSOLVED)

    FULL MARKS|Exercise PART-IV|2 Videos
  • SAMPLE PAPER 9 (UNSOLVED)

    FULL MARKS|Exercise PART-IV|4 Videos

Similar Questions

Explore conceptually related problems

A function f:[-7, 6) to R is defined as follows. f(x)={(x^(2)+2x+1, -7lexlt-5), (x+5, -5lexle2), (x-1, 2ltxlt6):} Find f(-7)-f(-3)

A function f:[1 6) to R is defined as follows. f(x)={(x+1, 1lexlt2), (2x-1, 2lexlt4), (3x^(2)-10, 4lexlt6):} Find the value of f(5)

A function f:[1 6) to R is defined as follows. f(x)={(x+1, 1lexlt2), (2x-1, 2lexlt4), (3x^(2)-10, 4lexlt6):} Find the value of f(3)

A function f:[1 6) to R is defined as follows. f(x)={(x+1, 1lexlt2), (2x-1, 2lexlt4), (3x^(2)-10, 4lexlt6):} Find the value of f(2)-f(4) .

A function f:[-5, 9] to R is defined as follows: f(x)={(6x+1" if" -5lexlt2 ), (5x^(2)-1" if "2lexlt6), (3x-4" if " 6lexle9):} Find 2f(4)+f(8)

A function f:[-5, 9] to R is defined as follows: f(x)={(6x+1" if" -5lexlt2 ), (5x^(2)-1" if "2lexlt6), (3x-4" if " 6lexle9):} Find (2f(-2)-f(6))/(f(4)+f(-2))

A function f:[-5, 9] to R is defined as follows: f(x)={(6x+1" if" -5lexlt2 ), (5x^(2)-1" if "2lexlt6), (3x-4" if " 6lexle9):} Find f(-3)+f(2)

A function f:[-5, 9] to R is defined as follows: f(x)={(6x+1" if" -5lexlt2 ), (5x^(2)-1" if "2lexlt6), (3x-4" if " 6lexle9):} Find f(7)-f(1)

A function f (-3 , 7) to R is defined as follows f (x) = {{:( 4 x^(2) + 1 , ,-3 le x lt 2) , (3x - 2 , ,2 le x le 4) , (2x + 3 , ,4 lt x lt 7):}} Find (i) 5 f(1) - 3 f(-2) (ii) 3f (-3) + 4 f (iii) (7 f (3) - f (-1))/(2 f (6) - f(1))

A function f [-3, 7] rarr R is defined as follows f(x) = {{: (4x^(2) - 1, " " -3 le x lt 2 ),(3x -2, " " 2 le x le 4 ),(2x -3 , " " 4 lt x lt 7):} Find (i) f (5) + f(6) (ii) f(1) - f(-3) (iii) f(-2)-f(4) (iv) (f(3)+ f(-1))/(2 f(6) - f(1))