The volume of
the greatest sphere that can be cut off from a cylindrical log of wood of
base radius 1 cm and height 5 cm is
`4/3pi`
(b) `(10)/3pi`
(c) `5pi`
(d) `(20)/3pi`
A
`(4)/(3) pi `
B
`(10)/(3) pi `
C
`5 pi`
D
`(20)/(3) pi`
Text Solution
Verified by Experts
Topper's Solved these Questions
SAMPLE PAPER -15 (UNSOLVED)
FULL MARKS|Exercise PART-II|14 Videos
SAMPLE PAPER -15 (UNSOLVED)
FULL MARKS|Exercise PART-III|13 Videos
SAMPLE PAPER -11 (UNSOLVED)
FULL MARKS|Exercise PART - IV|1 Videos
SAMPLE PAPER -20 (UNSOLVED)
FULL MARKS|Exercise PART-IV|2 Videos
Similar Questions
Explore conceptually related problems
The volume (in cm^(3)) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is
The radius of a right circular cylinder increases at the rate of 0.1 cm/min, and the height decreases at the rate of 0.2 cm/min. The rate of change of the volume of the cylinder, in c m^2//m in , when the radius is 2c m and the height is 3cm is -2p (b) -(8pi)/5 -(3pi)/5 (d) (2pi)/5
The radius of a right circular cylinder increases at the rate of 0.1 cm/min, and the height decreases at the rate of 0.2 cm/min. The rate of change of the volume of the cylinder, in c m^2//m in , when the radius is 2c m and the height is 3cm is -2p (b) -(8pi)/5 -(3pi)/5 (d) (2pi)/5
The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30^0 is (a) 4000pi/((3)) (b) 400pi/3c m^3 (c) 4000pi/(sqrt(3))cm^3 (d) none of these
What is volume of sphere whose radius is 4cm? (pi=3.14)
Volume of a hemisphere is 18000 pi cm^3 . Find its diameter
If the volume of a sphere is 9/16pi cu. Cm then its radius is __________ .
If for a real number y ,[y] is the greatest integral function less, then or equal to y , then the value of the integral int_(pi/2)^((3pi)/2)[2sinx]dx is -pi (b) 0 (c) -pi/2 (d) pi/2