Home
Class 10
MATHS
If A=((a, b), (c, d)) and I-((1, 0), (0,...

If `A=((a, b), (c, d)) and I-((1, 0), (0, 1))` show that `A^(2)-(a+d)A=(bc-ad)I_(2).`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 16 (UNSOLVED)

    FULL MARKS|Exercise PART-IV|1 Videos
  • SAMPLE PAPER 16 (UNSOLVED)

    FULL MARKS|Exercise PART-II|13 Videos
  • SAMPLE PAPER -5

    FULL MARKS|Exercise PART -IV|4 Videos
  • SAMPLE PAPER 17 (UNSOLVED)

    FULL MARKS|Exercise PART-IV|1 Videos

Similar Questions

Explore conceptually related problems

If A=[(0,1,1),(1,0,1),(1,1,0)] show that A^(-1)=1/2(A^(2)-3I) .

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] show that A(BC)=(AB)C

If A=[{:(0,1,1),(1,0,1),(1,1,0):}] show that A^(-1)=(1)/(2)(A^(2)=3I)

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] show that (A-B)C=AC-BC

If A= [{:(0,1,1),(1,0,1),(1,1,0):}], "show that" A^(-1)=(1)/(2)(A^(2)-3I)

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2

If A [{:(1,2,2),(2,1,2),(2,2,1):}] , show that A^2 -4A -5I =0

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O

If A=[(2,-1),(1,1)],B=[(1,0),(2,-2)],C=[(3,1),(-1,2)] Show that (i)(A+B)+C=A+(B+C). (ii)(AB)C=A(BC).