Home
Class 12
MATHS
log(|x+6|) 2 . log2 (x^2-x-2) >= 1...

`log_(|x+6|) 2 . log_2 (x^2-x-2) >= 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

if log_(x+1)2x -1 + log_(2x-1)x + 1=2 find x.

log_(2)x+(1)/(2)log_(2)(x+2)=2

Solve log_2(4xx3^x-6)-log_2(9^x-6)=1 .

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

log_(x^2+6x+8)log_(2x^2+2x+3)(x^2-2x)=0 holds for

Solve: "log"_(2) x - 3 " log_((1)/(2)) x = 6

log_(2)(x+1)-log_(2)(3x-1)=2