Home
Class 11
MATHS
int(1)/(e^(x))dx=……….....

`int(1)/(e^(x))dx=………..`

A

`loge^(x)+c`

B

`x+c`

C

`(1)/(e^(x))+c`

D

`(-1)/(e^(x))+c`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 01

    FULL MARKS|Exercise PART - II|10 Videos
  • SAMPLE PAPER - 01

    FULL MARKS|Exercise PART - III|16 Videos
  • SAMPLE PAPER 4

    FULL MARKS|Exercise PART-IV|6 Videos
  • SAMPLE PAPER - 2

    FULL MARKS|Exercise PART - III|17 Videos

Similar Questions

Explore conceptually related problems

int(x)/(e^(x^(2)))dx

Evaluate int(1)/(1+e^(x))dx

int(e^x)/(e^(2x)+4)dx

Evaluate int(1)/(1+e^x) dx

int(e^(x)+1)/(e^(x))dx :

Ecaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

int(e^(x))/(e^(x)+1)dx= ……………

int (dx)/(e^(x) - 1 ) dx is

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to