Home
Class 11
MATHS
For any vector veca prove that |veca xxh...

For any vector `veca` prove that `|veca xxhati|^(2)+|vecaxxhatj|^(2)+|vecaxxhatk|^(2)=2|veca|^(2)`.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 2

    FULL MARKS|Exercise PART - II|10 Videos
  • SAMPLE PAPER - 01

    FULL MARKS|Exercise PART - III|16 Videos
  • SAMPLE PAPER - 3

    FULL MARKS|Exercise PART - IV|7 Videos

Similar Questions

Explore conceptually related problems

For any vector veca prove that |vecaxxhati|^(2)+|vecaxxhatj|^(2)+|vecaxxhatk|^(2)=2|veca|^(2) .

For any vector veca prove that hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxhatk)=2veca

For any two vectors veca and vecb prove that |vecaxxvecb|^(2)+(veca*vecb)^(2)=|veca|^(2)|vecb|^(2)

If veca,vecb are any two vectors, then prove that |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2)

For any two vectors vec a and vec b , prove that | vec a xx vec b|^(2) = |vec a|^(2)|vec b|^(2) - (vec a . vecb)^(2) = [[veca.veca veca .vecb], [veca.vecb vec b.vecb]]

for any two vectors veca and vecb , prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2) .

If veca.vecb are say two vectors, then prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2)

For any two vectors veca and vecb|veca X vecb|^(2)+|veca.vecb| is:

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then " |2veca+ 5vecb+ 5vecc| is