Home
Class 11
MATHS
If y=e^(tan^(-1)x), show that (1+x^(2))y...

If `y=e^(tan^(-1)x)`, show that `(1+x^(2))y''+(2x-1)y'=0`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 2

    FULL MARKS|Exercise PART - II|10 Videos
  • SAMPLE PAPER - 01

    FULL MARKS|Exercise PART - III|16 Videos
  • SAMPLE PAPER - 3

    FULL MARKS|Exercise PART - IV|7 Videos

Similar Questions

Explore conceptually related problems

If y= (tan^(-1)x)^(2) , show that (x^(2)+1)^(2) y_(2)+2x(x^(2)+1)y_(1)=2 .

If e^(cot^(-1)x) Prove that (1+x^(2))y_(2) +(2x + 1)y_(1) = 0 .

If y=sin^(-1)x/sqrt(1-x^(2)) show that (1-x^(2))y_(2)-3xy_(1)-y=0 .

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

If y = (sin^(-1) x)/(sqrt(1-x^2)) show that (1-x^2) y_2 - 3xy_1 - y =0

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If y= 3 cos (log x)+4 sin(log x) , show that x^(2)y_(2)+xy_(1)+y=0 .