Home
Class 11
MATHS
If |vec(a)+vec(b)|=60, |vec(a)-vec(b)|=4...

If `|vec(a)+vec(b)|=60, |vec(a)-vec(b)|=40` and `|vec(b)|=46`, then `|vec(a)|` is .............. .

A

42

B

12

C

22

D

32

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 3

    FULL MARKS|Exercise PART-II|10 Videos
  • SAMPLE PAPER - 3

    FULL MARKS|Exercise PART-III|10 Videos
  • SAMPLE PAPER - 2

    FULL MARKS|Exercise PART - III|17 Videos
  • SAMPLE PAPER -17

    FULL MARKS|Exercise PART -IV|7 Videos

Similar Questions

Explore conceptually related problems

If |vec(a)| = 13, |vec(b)| = 5 and vec(a) cdot vec(b) = 60 then |vec(a) xx vec(b)| is

If vec(a)*vec(b)=vec(b)*vec(c),vec(a)=0, then the value of [vec(a),vec(b),vec(c)] is

The value of |vec(a)+vec(b)|^(2)+|vec(a)-vec(b)|^(2) is

If vec(A) + vec(B) +vec(C)=0, "then" vec(A) xx vec(B) is :

prove that [vec(a)-vec(b),vec(b)-vec(c)vec(c)-vec(a)]=0

Prove that (vec(a). (vec(b) xx vec(c)) vec(a) = (vec(a) xx vec(b)) xx (vec(a) xx (c)) .

Find |vec a| and |vec b| if (vec a + vec b).(vec a - vec b) = 3 and 2|vec b| = |vec a| .

If | vec a|=| vec b|=| vec a+ vec b|=1, then find the value of | vec a- vec b|dot

Find |veca| and |vec b| , if (vec a + vec b).(vec a - vec b ) = 7 and |vec a| = 7|vec b|