Home
Class 11
MATHS
For vec(a)=hat(i)+hat(j)-2hat(k), vec(b)...

For `vec(a)=hat(i)+hat(j)-2hat(k), vec(b)=-hat(i)+2hat(j)+hat(k)` and `vec(c)=hat(i)-2hat(j)+2hat(k)`, then find the unit vector parallal to `vec(a)+vec(b)+vec(c)` is ...................... .

A

`(hat(i)+hat(j)-hat(k))/(sqrt(3))`

B

`(hat(i)+hat(j)+hat(k))/(sqrt(3))`

C

`(hat(i)+hat(j)+hat(k))/(3)`

D

`(hat(i)-hat(j)+hat(k))/(sqrt(6))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 3

    FULL MARKS|Exercise PART-II|10 Videos
  • SAMPLE PAPER - 3

    FULL MARKS|Exercise PART-III|10 Videos
  • SAMPLE PAPER - 2

    FULL MARKS|Exercise PART - III|17 Videos
  • SAMPLE PAPER -17

    FULL MARKS|Exercise PART -IV|7 Videos

Similar Questions

Explore conceptually related problems

vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=-hat(i)+2hat(j)-4hat(k),vec(c)=hat(i)+hat(j)+hat(k)" then find the of "(vec(a)xxvec(b))*(vec(a)xxvec(c)).

If vec(a)=vec(i)+2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+hat(2j)+hat(k)," find "vec(a)*(vec(b)xxvec(c))

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=hat(i)+2hat(j)-5hat(k),vec(c)=3hat(i)+5hat(j)-hat(k), then a vector perpendicular to vec(a) and lies in the plane containing vec(b)andvec(c) is

If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k)andvec(c)=3hat(i)+hat(j)" find "lambda" such that "vec(a)+lambdavec(b) is perpendicular to vec(c).

If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k),vec(c)=3hat(i)+hat(j)" then "vec(a)+tvec(b) will be perpendicular to vec(c) only when t =

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)