Home
Class 11
MATHS
The value of e^(2logx) = ………….....

The value of `e^(2logx) = …………..`

A

2x

B

`x^(2)`

C

`sqrt(x)`

D

`x/2`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 4

    FULL MARKS|Exercise PART-II|10 Videos
  • SAMPLE PAPER 4

    FULL MARKS|Exercise PART-III|10 Videos
  • MODEL TEST PAPER

    FULL MARKS|Exercise PART-1|18 Videos
  • SAMPLE PAPER - 01

    FULL MARKS|Exercise PART - III|16 Videos

Similar Questions

Explore conceptually related problems

The maximum value of (logx)/x is (a) 1 (b) 2/e (c) e (d) 1/e

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

inte^(-logx)dx=?

(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))= …………. .

The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

L e tA=int_0^oo(logx)/(1+x^3)dx Then find the value of int_0^oo(xlogx)/(1+x^3)dx in terms of A

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

The value of x satisfying 5^logx-3^(logx-1)=3^(logx+1)-5^(logx - 1) , where the base of logarithm is 10 is not : 67 divisible by

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^(-1)e tan^(-1)(1/e) (d) none of these