Home
Class 11
MATHS
If lambda = - 2 , determine the value...

If `lambda = - 2` , determine the value of `|{:(0,2lambda,1),(lambda^(2),0,3lambda^(2)+1),(-1,6lambda-1 ,0):}|`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 4

    FULL MARKS|Exercise PART-III|10 Videos
  • SAMPLE PAPER 4

    FULL MARKS|Exercise PART-IV|6 Videos
  • SAMPLE PAPER 4

    FULL MARKS|Exercise PART-IV|6 Videos
  • MODEL TEST PAPER

    FULL MARKS|Exercise PART-1|18 Videos
  • SAMPLE PAPER - 01

    FULL MARKS|Exercise PART - III|16 Videos

Similar Questions

Explore conceptually related problems

If the rank of the matrix [(lambda,-1,0),(0, lambda,-1),(-1,0,lambda)] is 2, then find lambda .

If A = [(lambda,1),(-1,-lambda)] , then for what value of lambda,A^(2)=0 ?

Show that if lambda_(1), lambda_(2), ...., lamnda_(n) are n eigenvalues of a square matrix a of order n, then the eigenvalues of the matric A^(2) are lambda_(1)^(2), lambda_(2)^(2),..., lambda_(n)^(2) .

If |vec a| = 4 and -3 le lambda le 2 then the range of |lambda vec a|

If A = [{:(lambda,1),(-1,-lambda):}] , then for what values of lambda, A^(2) =0 ? …………..

If lambda_(1) and lambda_(2) be two values of lambda for which the expression x^(2)+(2-lambda) x+lambda-(3)/(4) becomes a perfect square, then calculate the value of (lambda_(1)^(2)+lambda_(2)^(2)) .

If the equation 4x^2-x-1=0a n d3x^2+(lambda+mu)x+lambda-mu=0 have a root common, then the rational values of lambdaa n dmu are a. lambda=(-3)/4 b. lambda=0 c. mu=3/4 b. mu=0

If z=(lambda+3)+isqrt(5-lambda^2) then the locus of Z is

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

Portion of asymptote of hyperbola x^2/a^2-y^2/b^2 = 1 (between centre and the tangent at vertex) in the first quadrant is cut by the line y + lambda(x-a)=0 (lambda is a parameter) then (A) lambda in R (B) lambda in (0,oo) (C) lambda in (-oo,0) (D) lambda in R-{0}